Thai Poetry: A Metrical Analysis

Apiluck Tumtavitikul
Kasetsart University

INTRODUCTION

Thai poetry is traditionally categorized into five major types: k^hlooy, $te^h\ddot{a}n$, k\textit{aap}, k\textit{l\ddot oon}, and r\ddot{a}aj. The meter is described with fixed number of syllables and rhyming scheme, most preferably given in the form of a template. In addition, first and second tones are prescribed for k^hlooy on certain syllables, and fixed positions for heavy and light syllables are designated for $te^h\ddot{a}n$ (cf. Appendix).

Variations on the subtype for each category are due to differences in the number of syllables and lines required, and also the number of tones prescribed for k^hlooy, and different heavy/light syllable patterns for $te^h\ddot{a}n$. For every type and subtype, the designated template has to be learned.

These seemingly diversified templates are in fact, analyzable with a set of metrical rules, which conform to the natural metrical structure of the language itself. This paper attempts to arrive at such phonological generalizations for Thai verse.

THE PROSODIC CONSTRUCT

The prosodic construct of Thai poetry in traditional description consists of $k^h\ddot{a}m$ ‘word’ as the smallest prosodic unit. A number of $k^h\ddot{a}m$ are organized into a w\textit{ak} ‘phrase.’ and one or more w\textit{ak} make a b\textit{aat}, and a number of b\textit{aat} make a b\textit{ot}, which is comparable to a stanza. For example, (1) below is a template for k\textit{l\ddot oon} 8, a subtype of k\textit{l\ddot oon}.

In general a $k^h\ddot{a}m$ is either a monosyllabic word or a syllable of a polysyllabic word. Hence, its equivalence is a phonological syllable. It is noted that this paper treats a w\textit{ak} as a poetic “line” consistently. As such, the complicated rhyming scheme for each type and subtype is reducible to a minimal pattern of line-end rhyming with or without an internal rhyming pattern. Also, the rhythmic pattern can be analyzed as right-headed feet X-meter line (discussed in the next section).

In (1), when a w\textit{ak} is taken to be a poetic “line” despite the template, the rhyming scheme can be easily seen with a beautiful end-rhyme pattern of $a\ b\ b\ c\ d\ c\ e\ e$ end-rhyme pattern in (2). Ignoring the internal rhyme, the $a\ b\ b\ c\ d\ c\ e\ e$ end-rhyme pattern is found to be most prevalent in all other types of Thai verse except r\ddot{a}aj where end-rhyme does not occur. Slight variations of end-rhyme on major subtypes are mainly due to deletion of line a, i.e., the first line, or adding line b to the couplet yielding $b\ b\ b\ c\ e$ pattern. For example, $k^hlooy\ 2$, k\textit{aap}\ t\text{\c{e}\d{a}b\ddot{a}n}\ 16$, m\textit{a\l{\ddot{o}}n}\ t\textit{c\ddot{a}n}\ 15$, and s\textit{\ddot{a}t\ddot{t}ul\ddot{w}i\ddot{k}\text{\c{i}k\ddot{i}k}\ddot{t}\ddot{i}\ddot{t}}\ t\textit{c\ddot{a}n}\ 19$ (Figures 4, 8, 14, and 15 in Appendix) are the same case of missing line a, and $b\ b\ c\ e$ end-rhyme pattern is found. k\textit{aap}\ s\text{\c{u}\r{\ddot{a}}n}\k^h\ddot{a}n\text{\acute{a}n}\ 28$ and 32 (Figures 9 and 10 in Appendix) are both an octave-stanza with $a\ b\ b\ c\ d\ c\ e\ e$ end-rhyme pattern, although line a is missing for k\textit{aap}\ s\text{\c{u}\r{\ddot{a}}n}\k^h\ddot{a}n\text{\acute{a}n}\ 28$, leaving it with an overt seven-line stanza, and $a = b$ in k\textit{aap}\ s\text{\c{u}\r{\ddot{a}}n}\k^h\ddot{a}n\text{\acute{a}n}\text{\acute{a}n}\ 32$, yielding $b\ b\ b\ c\ d\ c\ c\ e$ end-rhyme pattern.
An exception is a major subtype, $k^4lloonj$ 4 (Figure 6 in Appendix), where the $a \ b \ c \ b \ d \ c \ e$ pattern is found for the eight-line stanza. Some other different versions of end-rhyme are found on minor subtypes, most of which can be traced to the canonical pattern of $a \ b \ c \ e$.

(1) $lloon$ consists of eight k^4am in a wák, two wák in a bàat, and two bàat in a bôt.

\[
\begin{align*}
\sigma & \sigma \sigma \sigma \sigma \sigma \sigma \sigma \\
\sigma & \sigma \sigma \sigma \sigma \sigma \sigma \sigma
\end{align*}
\]

\text{bàat 1}

\[
\begin{align*}
\sigma & \sigma \sigma \sigma \sigma \sigma \sigma \sigma \\
\sigma & \sigma \sigma \sigma \sigma \sigma \sigma \sigma
\end{align*}
\]

\text{bàat 2}

(2) When each wák is taken to be a poetic "line," an end-rhyme pattern of $a \ b \ b \ c \ d \ c \ c \ e$ is clearly seen as an octave of two stanzas, within which there are two couplets; $b \ b$ and $c \ c$.

\[
\begin{align*}
\sigma & \sigma \sigma \sigma \sigma \sigma \sigma \sigma \\
\sigma & \sigma \sigma \sigma \sigma \sigma \sigma \sigma \\
\sigma & \sigma \sigma \sigma \sigma \sigma \sigma \sigma \\
\sigma & \sigma \sigma \sigma \sigma \sigma \sigma \sigma \\
\sigma & \sigma \sigma \sigma \sigma \sigma \sigma \sigma \\
\sigma & \sigma \sigma \sigma \sigma \sigma \sigma \sigma
\end{align*}
\]

A METRICAL ANALYSIS

Tumtavitikul’s (1997) account of the metrical structure of Thai, which is based on the Metrical Theory of Liberman and Prince (1977), can be summarized as in (3).

(3) Thai Metrical Structure:

a. The metrical structure is built on syllables as the smallest units, and the structure is quantity-sensitive.

b. Syllable weight is based on rime-projection. Light syllable is defined with a single mora, a (C)V-syllable, in which glottal stop at syllable-final is taken to be phonetic and not present underlyingly. Any other syllable with more than one segment in the rime is considered heavy. An exception is a word-final light syllable, which, despite its internal structure, is inherently "heavy" by its right-edge position.

c. The metrical foot is right-headed and is built as a leftward spreading unbounded foot.
d. The metrical word is also right-headed and is built as a leftward spreading unbounded word.

Clearly from (3) Thai is predominantly a right-headed language with right-headed phonological feet and words. This natural characteristic of the language is relevant in Thai meter. The most obvious cases are the $t\check{c}h\ddot{a}n$ where heavy and light syllables are prescribed. Although the subtypes of the heavy/light syllable pattern differ one from another, one thing all have in common is that for each line the meter is accounted for by consecutive right-headed feet of some kind. For example, todòkkà $t\check{c}h\ddot{a}n$ 12 (Figure 12 in Appendix) is an anapest dimerter, with - - 1 - - 1 rhythmic pattern. int\check{r}awit$\check{c}h\ddot{i}an$ $t\check{c}h\ddot{a}n$ 11 (Figure 11 in Appendix) is a spondee/anapest-bacchic meter, with a rhythmic pattern of 1 1 - 1 1 alternating with - - 1 - - 1. Most interestingly, malìni $t\check{c}h\ddot{a}n$ 15 (Figure 14 in Appendix) consists of an unbounded right-headed foot and a degenerated foot in one line, and a degenerated foot and a cletic in another, and the stanza ends with a bacchic monometer. Caesuras will certainly assist the rhythmic flow in such case.

For all other types of poetry without the prescription of heavy/light syllables, iambic-cretic/anapest di/tri-meter is dominant. This is witnessed by the choice of words used and the rhythm read. This too bears evidence on the analysis into right-headed feet and words. For example, klònn 8 is a cletic-iambic-cretic meter, a trimeter line. klònn 6 is an iambic trimeter, klònn 9 is a cletic trimeter, and kàap $sùraaṅk$ bānaaŋ 28 and 32 are both iambic-dimeter. (4) is an example of a bàat in klònn $sùp$bhäap, which includes klònn 6, 7, 8, and 9, from krommamìnn p\ddot{h}itt\ddot{b}ājàaλòŋk$\ddot{c}coon$'s sàmkruŋ.

(4) A cletic trimeter in which a diverted bacchic is noted, and a cletic-spondee-cretic meter.

\[
\begin{array}{cccccc}
\text{sùn}h \ sà \ wàn \ t\check{c}h\ddot{a}n \ kà \ wii \ rù \ tçii \ rãt \ Îl \\
\end{array}
\]

(5) This is metrical structure of (4).

\[
\begin{array}{ccccccc}
\Phi & / & / & / & / & L \\
\Sigma & \Sigma & \Sigma & \Sigma & \Sigma & \Sigma \\
\text{sùn}h \ sà \ wàn \ t\check{c}h\ddot{a}n \ kà \ wii \ rù \ tçii \ rãt \\
\end{array}
\]

\[
\begin{array}{ccccccc}
2^{nd} & 1^{st} & 2^{nd} & 1^{st} & 2^{nd} & 1^{st} \\
\end{array}
\]
For each foot (Φ), the syllable at the right-edge of Φ is the most prominent. The second most prominent syllable is the heavy syllable at the Σ level which is not Φ-prominent. And the ultimate prominence is the Φ-prominent syllable at the right edge of the line L, the L-prominent syllable. As such, the degree of prominence is established. This serves as the basis for internal rhyme as follows:

(6) Internal Rhyme:

a. between adjacent lines (L): The L-prominence rhymes with a Φ-prominent syllable to its right in the adjacent line.

b. between adjacent feet (Φ): A Φ-prominence rhymes with a Σ-prominent syllable to its right in the adjacent foot (Φ).

For example.

(7) From (5), L-prominent rāt rhymes with Φ-prominent pʰák of the adjacent line and Φ-prominent wān rhymes with Σ-prominent teʰán of the adjacent foot (Φ), so does Φ-prominent wii with Σ-prominent teii, and hāaw with pʰraaw.

(6) is consistent with the predominant internal rhyming patterns across types in which the last syllable of one line rhymes with either the second, third, fourth, fifth, or sixth syllable of an adjacent line to its right (cf. Appendix). The rhyming possibilities seem to be dependent on the right-headed metrical constituents of the adjacent line. For an example, in klooj 6 as an iambic trimeter: the last syllable of the first line rhymes with either the second or fourth syllable of the second line, for theseyllables of the second line are Φ-prominent and (6)a is satisfied as shown in (8).

(8)