A ROLE & REFERENCE GRAMMAR ACCOUNT OF BONGGI –an

Michael Boutin
Institut Linguistik SIL Malaysia

In Bonggi, a Western Austronesian language of Sabah, Malaysia, the suffix -an occurs in three different verbal constructions: internal experience states as in (1); adversative constructions as in (2); and benefactive constructions as in (3).

(1) Rimig-adn ou na.²
ramig-an ou na
cold-INTEXP 1SG.NOM now³
'I am feeling cold.'⁴

(2) I-puda-adn ou lampu.⁵
in-puda?-an ou lampu
REAL-extinguish-ADVER 1SG.NOM lamp
'The light went out on me.'

(3) Ou biri-adn nya siidn.
bori-an nya siin
1SG.NOM give-BEN 3SG.GEN money
'I will be given money by him.'

This paper is concerned with the meaning of -an in (1), (2) and (3). Should -an be split into three different meanings, or are there three context-dependent usages that can be joined in a single, basic, abstract meaning?

Are there objective principles for deciding whether different usages of -an (or, for that matter, any morpheme) are distinct or not? This problem is approached here from the perspective of Role & Reference Grammar (RRG). §1 provides a brief introduction to RRG, whereas §2, §3 and §4 offer semantic
analyses of the usages of –an in (1), (2) and (3). §5 shows that –an has a single, general invariant meaning in Bonggi.

1. Introduction to RRG

In RRG, lexical representation is based on the classification of predicates into Aktionsart classes. Vendler (1967) devised a universal four-way semantic distinction between: 1) states, 2) accomplishments, 3) achievements and 4) activities. These four Aktionsart classes correspond to major verb classes which are encoded in the verbal morphology of Bonggi.

States are static situations with no activity as in (4).

(4) Sia ng-korikng.
 sia m-korinya
 3SG.NOM AT.ST-dry
 ‘It is dry.’

Accomplishments are nonpunctual changes of state which have an endpoint as in (5).

(5) Sia k-i-m-orikng.
 sia -in--om-korinya
 3SG.NOM -REAL--ACL-dry
 ‘It became dry.’

Achievements are punctual changes of state which have an endpoint as in (6).

(6) Sia i-puda?
 sia -in-puda?
 3SG.NOM REAL-extinguish
 ‘It extinguished.’

Activities involve a participant doing something and have no clear endpoint as in (7).

(7) Sia l-i-m-ompud.
 sia -in--om-lompud
 3SG.NOM REAL-ACY-ran
 ‘She ran.’

In RRG the relationship between a predicate and its arguments is expressed by logical structures (LSs). LSs provide a formal semantic representation for each verb and they consist of predicates, their arguments and a small set of operators (Van Valin 1990:223). Distinctions among the four basic Aktionsart classes are formally represented in Table 1.
Table 1: LSs for basic Aktionsart classes

<table>
<thead>
<tr>
<th>Aktionsart class</th>
<th>Logical structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>predicate' (x) or predicate' (x, y)</td>
</tr>
<tr>
<td>Accomplishment</td>
<td>BECOME predicate' (x) or BECOME predicate' (x, y)</td>
</tr>
<tr>
<td>Achievement</td>
<td>INGR predicate' (x) or INGR predicate' (x, y)</td>
</tr>
<tr>
<td>Activity</td>
<td>do' (x, [predicate' (x)]) or do' (x, [predicate' (x, y)])</td>
</tr>
</tbody>
</table>

In Table 1, the variables 'x' and 'y' represent arguments of the predicate. Each of the four Aktionsart classes has two possible LSs depending on whether the verb has one or two arguments. For example, single argument stative verbs have a generic LS `predicate' (x)`, whereas two argument stative verbs have a generic LS `predicate' (x, y)`.

Not only is each verb given a formal representation or LS, but also each clause can also be given a formal representation. For example, (4) is a single argument attributive stative clause whose verb has the LS: `be' (x, [dry'])`, which corresponds to the generic LS for two-place stative verbs in Table 1: `predicate' (x, y)`. Attributive statives have two argument positions (x and y), but the second argument position is filled by a predicate. The clause specific semantic representation (SR) for (4) is: `be' (3SG, [dry'])`.

(5) is an accomplishment with an underlying attributive state. (8a) is the generic LS for such verbs. (8b) is the LS for the verb kimirikng 'became dry' in (5), whereas (8c) is the SR for (5).

(8a). LS for accomplishments with underlying attributive state:

 a. BECOME `be' (x, [pred'])
 b. BECOME `be' (x, [dry'])
 c. BECOME `be' (3SG, [dry'])

(6) is an achievement with an underlying condition state. (9a) is the generic LS for such verbs. (9b) is the LS for the verb ipuda? 'extinguished', whereas (9c) is the SR for (6).
(9) a. LS for achievements with underlying condition state: \textbf{INGR pred'} (x)
b. LS for \textit{ipuda?} 'extinguished': \textbf{INGR extinguish'} (x)
c. SR for (6): \textbf{INGR extinguish'} (3SG)

(7) is an activity. (10a) is the generic LS for such verbs. (10b) is the LS for the verb \textit{limompud} 'ran', whereas (10c) is the SR for (7).

(10) a. LS for one-place activities: \textit{do'} (x, [pred' (x)])
b. LS for \textit{limompud} 'ran': \textit{do'} (x, [run' (x)])
c. SR for (7): \textit{do'} (3SG, [run' (3SG)])

The four basic \textit{Aktionsart} classes describe basic states of affairs (SAs); however, states of affairs can also be induced. Induced SAs are complex in that one SA brings about another. For example, in (11) an activity (a person doing something) induces an accomplishment (coconut becoming dry).

(11) \textit{Sia ng-orikng piasu.}10
sia \textit{n\text{-}koriŋ} piasu
3SG.NOM ISA.ACT-dry coconut
'\textit{She dries coconuts.'}

The LS for induced SAs is \textit{\alpha CAUSE \beta}, where \textit{\alpha} is a causal state of affairs which induces another SA \textit{\beta}. The logical operator \textit{CAUSE} expresses a causal relationship between two states of affairs. The generic LS for induced accomplishments with an underlying attributive state is provided in (12a). The LS for the verb \textit{ngorikng} 'to dry something' is shown in (12b). The clause specific semantic representation for (11) is provided in (12c).11

(12) a. LS for induced accomplishment: \textit{do'} (x, [pred' (x)]) \textbf{CAUSE [BECOME be' (y, [pred'])]}
b. LS for \textit{ngorikng} 'to dry something': \textit{do'} (x, \emptyset) \textbf{CAUSE [BECOME be' (y, [dry'])]}
c. SR for (11): \textit{do'} (3SG, \emptyset) \textbf{CAUSE [BECOME be' (piasu, [dry'])]}

\textit{Aktionsart} distinctions are fundamental features of the verbal system in all languages (Van Valin & LaPolla 1997:99). Predicates are classified into different \textit{Aktionsart} classes on the basis of a series of tests which have cross-linguistic validity (Van Valin & LaPolla 1997:93ff.). Some languages, including Bonggi, mark these verb classes overtly with some type of