Initial consonants in Yipo-Burmic and their effect on tonogenesis with special attention to stop-final syllables.

Dempsey, Jakob

Introduction.

The two major sides of the Yipo-Burmic (Lolo-Burmese) language family both contain many examples of languages whose tone-systems are sufficiently complex to reflect two, or sometimes more, different reflexes developing out of the Common YB (cYB) tonal categories. In Lahu, for example, words with a mid-level tone often derive from cYB Tone-Conture One (TC-I) when the word had a voiceless initial, thus typologically similar to Mandarin Tone-1 (mā) while words with a low-falling tone also derive from cYB TC-I, but from formerly voiced initials, parallel to Mandarin Tone-2 (má). On the Burmish side, Bola, for example, shows no such split in its tonal reflexes for TC-I, but words with a high-rising tone often derive from TC-II with voiceless initials, whereas words with low-falling tone as a rule derive from TC-II with voiced initials in cYB. Conversely, Lahu fails to show such a split for TC-II (although it does show a TC-II split based on another, less commonly seen distinction).

For the historical phonologist it is particularly unfortunate that the language with the oldest records in the YB group, Inscriptional and Written Burmese, itself lacks any tonal splits at all, thus, despite all its other valuable evidence, Burmese contains no information about the earlier voiced vs. voiceless status of cYB non-resonant initials. This is a fact which seems to have eluded some scholars working in this field.

Based on the languages which do show such tonal splits, many aspects of the YB group's phonological history have been worked out to the agreement of many investigators, although in the case of the Burmish side such work has been very recent. But with regard to TC-IV, the category of words that can be deemed to have had final stop consonants in cYB, there is significant disagreement among scholars. The variety of initial-types found to occur in present-day YB languages within the tonal categories that must be reflexes of cYB TC-IV is larger than one would expect based on the fairly simple explanations that have been worked out for the other Tone Contures, and the confusion lies in various scholars' attempts to explain this unexpected distribution. Resonants are typically associated with voiced initials from the proto-language, but here we find them also on the other side of the tonal split derived from voiceless initials. Most particularly, aspirated stop initials are found in many of these languages on both sides of the tonal split within this TC-IV group. This paper examines the major theories which attempt to explain this tonal split in TC-IV, and introduces a new view based on known historical developments in Chinese, Karen, Thai, and particularly in Tibetan.

Distribution of initials in TC-IV syllables in YB.

We will examine the types of initials which can occur in languages of the YB group. Since our interest is in understanding the behavior of categories of sounds, it is not necessary to catalog every single type of initial possible. For this preliminary investigation it will suffice to pick a suitably representative language from the Burmish side and the Yipoish side of YB.
and the upper one from voicing. But when we look at the stops, the picture is not so clear. If we
consider longer blocks, we find that the lower register derives from the upper register, and the
higher register from the lower one. The speaker's voice becomes more nasal towards the lower register, these facts
are consistent with numerous upper-register /-s/ words, and the distribution holds for
/-s/. The lower-register /-s/ is only found in one T.C. loan, for the monoplovis, but, from the same
sound bigram, the lower-register /-s/ is not found in any T.C. loan. A similar distribution holds for
/-l/ and /-j/-words, and the lower-register /-l/ is only found in one T.C. loan, for the
monoplovis, but, from the same sound bigram, the lower-register /-s/ is not found in any T.C. loan.

We can see that the distribution is virtually the same, which could indicate that the two lore-
 registers are basically of independent origin, but we consider the need not be so simple.

We can see that the distribution is virtually the same, which could indicate that the two lore-

register. We can see that the distribution is virtually the same, which could indicate that the two lore-
registers are basically of independent origin, but we consider the need not be so simple.

We can see that the distribution is virtually the same, which could indicate that the two lore-

register. We can see that the distribution is virtually the same, which could indicate that the two lore-
registers are basically of independent origin, but we consider the need not be so simple.

We can see that the distribution is virtually the same, which could indicate that the two lore-

register. We can see that the distribution is virtually the same, which could indicate that the two lore-
registers are basically of independent origin, but we consider the need not be so simple.

We can see that the distribution is virtually the same, which could indicate that the two lore-

register. We can see that the distribution is virtually the same, which could indicate that the two lore-
registers are basically of independent origin, but we consider the need not be so simple.

We can see that the distribution is virtually the same, which could indicate that the two lore-

register. We can see that the distribution is virtually the same, which could indicate that the two lore-
registers are basically of independent origin, but we consider the need not be so simple.

We can see that the distribution is virtually the same, which could indicate that the two lore-

register. We can see that the distribution is virtually the same, which could indicate that the two lore-
registers are basically of independent origin, but we consider the need not be so simple.

We can see that the distribution is virtually the same, which could indicate that the two lore-

register. We can see that the distribution is virtually the same, which could indicate that the two lore-
registers are basically of independent origin, but we consider the need not be so simple.

We can see that the distribution is virtually the same, which could indicate that the two lore-

register. We can see that the distribution is virtually the same, which could indicate that the two lore-
registers are basically of independent origin, but we consider the need not be so simple.

We can see that the distribution is virtually the same, which could indicate that the two lore-

register. We can see that the distribution is virtually the same, which could indicate that the two lore-
registers are basically of independent origin, but we consider the need not be so simple.

We can see that the distribution is virtually the same, which could indicate that the two lore-

register. We can see that the distribution is virtually the same, which could indicate that the two lore-
registers are basically of independent origin, but we consider the need not be so simple.

We can see that the distribution is virtually the same, which could indicate that the two lore-

register. We can see that the distribution is virtually the same, which could indicate that the two lore-
registers are basically of independent origin, but we consider the need not be so simple.

We can see that the distribution is virtually the same, which could indicate that the two lore-

register. We can see that the distribution is virtually the same, which could indicate that the two lore-
registers are basically of independent origin, but we consider the need not be so simple.
count by individual entries, we find, for dentals and labials:

upper register: 51 d-, 53 b- 75 t-, 60 p- 26 t’-, 60 p’-
lower register: 21 d-, 19 b- 43 t-, 30 p- 22 t’-, 68 p’-

Now, if the upper register is associated with voiceless proto-initials, what are all those voiced stops doing there, over twice as many as in the lower register? And although it makes sense that t- and p- are much more seen in the upper than the lower, but why should they be in the lower at all, and especially why are there all those aspirated t’- and p’- in the lower register?

Explanations for the distribution.

An explanation for much of this can be found in Matisoff 1972: the upper-register voiced stops derive from earlier prenasalised voiceless stops, e.g. ‘t- ‘p- , those in the lower register then derive from ‘d- ‘b- etc. The lower-register t- and p- here were said to derive from earlier d- and b- , which would then have a surprisingly low frequency in this sample. The aspirated stops in lower-register, although rather plentiful, had the most elaborate (~ marked) derivation: they were said to be originally voiceless stops but prefixed by some voiced prefix (evidently excluding the homo-organic nasal). So, for example, Matisoff was led to account for the difference in Lahu between a high-toned form like k’aq ‘crossbow’ and a low-toned form like k’dq ‘six’ by posting a prefix, probably d- in this case, before a voiceless *kruk.

Matisoff theorised that the “voiced prefixes” seen in Written Tibetan (g- b- d- r- l- c-) were also found in proto-Yipoish; the argument being: ‘six’ must have had a voiceless velar stop in order to turn into the present voiceless aspirate (according to Benedict’s system laid down in the STC), but the tone category is low, so there must have been a voiced prefix before the velar stop that caused the word for ‘six’ to end up with a low tone. This would be in agreement with the generally observed tonogenetic phenomenon seen throughout East Asia, including in Chinese, wherein voiced initials develop into low tones and voiceless initials into high tones.

Li 1996 offers quite a different view on the early shape of YB. He would posit no consonantal prefixes at all for the cYB stage, although he accepts them for Common Tibeto-Burman (cTB). Although he accepts the Matisoff-Bradley version of a two-way (e.g. p b) distinction in initial stops for cTB, he reconstructs a four-way distinction for cYB: p - p’ - b - b’ . He also recognizes the likelihood that the difference between, say, cYB p- and p’- is due to the influence of prefixes at the cTB stage; also that where one YB language has p- corresponding to p’- in another YB language, that is also likely due to the influence of cTB prefixes (op.cit. bottom of page 2). I cannot follow Li’s logic here: if we are talking about prefixes still in the cTB stage, there would not even be any cYB language in existence, let alone any individual YB languages to be influenced.

Li’s cYB *b’- is indeed an oddity: although we find such four-way stop-arrays in many languages of the Indian subcontinent, they are practically non-existent in East Asia, the Sino-Tibetan sphere. Furthermore, one usually reconstructs *b’- in order to account for a combination of voicing and aspiration seen in daughter languages, e.g. voiced aspirates for Indo-European, although increasingly in doubt, were to account for the aspiration seen in its reflexes in Sanskrit and Greek (and of a sort in Latin, too). Li’s *b’-, however, has no aspirated reflexes (op.cit. page 4), so I suspect it could be better interpreted as “some different kind of *b-”.

In Li 1992 he first suggests three different factors which may influence the development of
Given these serious problems involved in using L's analysis of congruence in YPs, can we pass for CDP?

There are real linguistic, particularly in East Asia, with such a phonological topology as L-pro-

In this, CDP and the Japanese are again in conflict with any type of code, not just with stop sounds. Is

There are several cases where we find something similar in other languages, such as in Japanese, where the phonological differences are even more pronounced.

Given these serious problems involved in using L's analysis of congruence in YPs, can we pass for CDP?

"system, variable in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-

There is no evidence for such a phonological topology in LPS, or even in LYPB, is a language that is not evidence for such a phonological topology as L-pro-