AUSTRONESIAN ROOTS AND SINO-TIBETAN: SOME LEXICAL CORRESPONDENCES*

Lee C. Hogan
Austin, Texas

ABSTRACT

Sagart in a recent publication (1994) has again argued that Austronesian and Chinese are genetically related; however, he has not proposed any correspondences between Austronesian and Sino-Tibetan. Herein a comparison of some Austronesian roots in Blust 1988 and Sino-Tibetan reconstructions in Coblin 1986 will be made in terms of word families and allofams in order to evaluate a possible genetic relationship.

* I would like to thank my wife, Felipa, who, because of her knowledge of Philippine languages, helped me avoid many errors of omission and commission. All remaining errors are the author's own. Needless to say, this work would not have been possible without the publications of Benedict, Blust, Matisoff, and Sagart.

Unfortunately, LaPolla 1994 was unavailable to me until this paper was written. Although some of his reconstructions for Proto-Tibeto-Burman from that paper have been added, this paper would have been improved in several important ways if his paper had been available initially.

This work makes no pretense at addressing, even obliquely, the relevant archaeological and anthropological issues bearing on the areal or genetic relationships between the speakers of Austronesian and Sino-Tibetan languages. For some recent articles on these issues see Blust 1993, Bellwood 1994, and Mahdi 1994a, b. For recent articles on the relationships between Austronesian and other languages of Asia, see Thurgood 1994, Reid 1994 and Hogan 1993.

Blust 1988 pays a great deal of attention to sound symbolism and onomatopoeia. His identification of certain forms as onomatopoeia (O) is respected, and very few of those so identified are used in our comparisons; however, the articles in Hinton, Nichols and Ohala 1994 are relevant to his conclusions concerning individual reconstructions and generalizations. Mahdi 1994a, b is a criticism of the use of shared innovations as subgrouping criteria. Using historical sources, he successfully argues against the use of specific forms and segmental distinctions in Taiwanese languages such as *b*/*L to establish PAN forms. As he argues, given the navigational skills of Austronesian language speakers, Taiwan is much too close to the Philippines not to have been subjected to areal influence from the Philippine languages.

For languages and language abbreviations, see Appendix 1.
1.0. INTRODUCTION

As indications of genetic relationships at the family or stock level, the more
the languages under examination correspond in phonology, morphology, and
syntax the more secure is the demonstration of genetic relationship. The first
two of these areas of historical linguistics will be examined below: first,
relevant phonological and morphological aspects of Austronesian roots in Blust
1988, then these aspects of Sino-Tibetan reconstructions in Coblin 1986.
These will then be used to propose some lexical correspondences for
Austronesian and Sino-Tibetan. Finally, some general conclusions will be
drawn concerning segmental reflexes and phonological processes.

2.0. (PAN-)AUSTRONESIAN

In this section, (Pan-)Austronesian [PAN] phonemes as in the
reconstructions of Blust 1988, etc., will be discussed first, then (P)AN syllable
structure, then relevant consonant and vowel alternations in terms of word
families and allofamy, and finally (P)AN morphology.

2.1. (P)AN Austronesian Phonemes

Blust 1988 reconstructs Austronesian roots at several levels; of those levels,
Proto-Austronesian (PAN), Proto-Malayo-Polynesian (PMP), Proto-Western-
Malayo-Polynesian (PWMP), Western Malayo-Polynesian (WMP) and
Formosan (F) are all relevant to our reconstructions. The system of consonant
phonemes in (P)AN in the reconstructions of Blust 1980:13 is given in Table 1:

<table>
<thead>
<tr>
<th>Labial</th>
<th>Dental/Alveolar</th>
<th>Retroflex</th>
<th>Palatal</th>
<th>Velar</th>
<th>Post-velar</th>
<th>Laryngeal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops</td>
<td>p</td>
<td>T</td>
<td>k</td>
<td>q</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>d</td>
<td>j[g y]</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affricates</td>
<td>C</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fricatives</td>
<td>s S</td>
<td>(s)</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasals</td>
<td>m</td>
<td>n</td>
<td>N</td>
<td>n</td>
<td>η</td>
<td></td>
</tr>
<tr>
<td>Liquids</td>
<td>L</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glides</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Blust's (P)AN consonants.
According to Blust (1990a:232ff.), these symbols represent the following sounds in (Proto-)Austronesian: The voiceless stops and affricates are unaspirated. The phoneme *s may have been a voiceless palatal sibilant. The liquid *L was probably a voiceless alveolar lateral, *r an alveolar tap, and *R probably an alveolar or uvular trill. The palatals *c, *z and *n occur only initially. Within the roots examined herein, the retroflexes *T, *D and *N are predominantly syllable initial, the exception being *D with six occurrences initially and two finally. The affricate *C occurs predominantly as a syllable final, the exception being *Cik ‘mottled, spotted’. The symbol *q represents a post-velar, “probably a uvular.” The system of simple vowels in (P)AN according to Blust 1990a:233 are *i, *e, *a, *u (where *e is an orthographic symbol for schwa ə). The system of diphthongs “was probably” (Blust 1990a:233ff.) *iw, *uy, *ay, and *aw, to which should also be added *ey. All diphthongs occur only in syllables such as *tey ‘suspension bridge’ and *naw ‘melt, liquefy’.1

2.2. (P)AN Syllable Structure

Almost without exception, the roots established by Blust have the form CVC. The exceptions include the following: *bu ‘dust’, *ka(q)1 ‘open forcibly’, *ku(q) ‘bend, curve’, *nga(q) ‘gapping, wide open’, *pi ‘dream’, and *pi(q) ‘fold’. Because (P)AN diphthongs do not occur before consonant codas, the off-gliding second portion of the diphthongs should be considered a [-syllabic] coda. Thus, assuming the phonemes represented by capitalized letters (*T, etc.) and the affricates and palatals are unit phonemes, the optimal syllable for (P)AN is as in Figure 1, in which “O” represents the onset, “R” the rhyme, “N” the nucleus, and “Co” the coda. This syllable structure is a simplification of that of both Sino-Tibetan and Old Chinese.

---
1 See Hogan 1993:52ff. for a brief discussion of some different systems of reconstruction such as Wolff 1988. Mahdi 1994a:170 considers *r and *z as “maverick proto-phonemes” and argues for their removal from PAN reconstruction and replacement by *R and *Z, respectively. Madhi 1994a:171 also agrees with Wolff in an earlier publication (1982) in considering *c and *T post-PAN developments, the former deriving from *s by a conditioned split, and the latter being a local development within Javanese and Madurese. (This is not accepted herein.) He also questions the distinction between *l and *L, with separate reflexes in only a few languages in Taiwan; this distinction he attributes to a very local areal effect (p. 211 n. 63). He, however, accepts both PAN *j and *q but considers them to be a preglottalized or velar lateral and a preglottalized voiced velar stop, respectively. He correctly considers the distinction between *i, *u and *y, *w to be non-phonemic, the latter of the two pairs being merely non-syllabic forms of the former, with syllabicity being determined by syllable position (p. 208ff. n. 41). A new phoneme which he suggests is *B (pp. 171, 201ff. n. 12), although he does concede that it was probably a positional variant of *b.
In the framework of optimality theory the syllable structure of (P)AN requires parsing (PARSE) of segments (no ellipsis of segments) and a coda condition (CODA) which requires that a coda be present. The latter in conjunction with FILL, which requires that all C and V nodes dominate their expected daughters, generates epenthetic segments. The ranking for these conditions seems to be CODA >> PARSE >> FILL. This permits the epenthesis of the segment -q as a coda for those syllables not containing one. Those syllabic roots such as *bu ‘dust’ and *pi ‘dream’ which are reconstructed without codas do not represent the optimal syllable structure of (P)AN because they violate CODA; however, they may not necessarily be automatically disqualified as valid reconstructions.

2.3. (Pan-)Austronesian Roots and Word Families

The use of word families in the historical linguistics of Asian languages goes back to Karlgren 1933, where he established relationships between lexemes showing variations in initial and final consonants in Archaic Chinese (Old Chinese). The word families that he established for Old Chinese are now known to be due to derivational and inflectional processes, which modified the roots. 2

Within (P)AN, there is also a great deal of segmental variation in the roots listed in Blust 1988. These alternations will be discussed in terms of initial consonant alternations, then final consonant alternations, and lastly vowel alternations. These alternations will be considered as analogues to those which occur within word families in Sino-Tibetan.

2 For a discussion of word families in Tibeto-Burman see Matisoff 1978b:16ff.