I. Introduction

Mandarin tone sandhi, the most well-known of the Chinese sandhi phenomena, involves the change of the L\(^1\) tone to a sandhi LH tone before another L tone. This change has been studied both under the traditional approach (i.e. Cheng (1973), Shih (1986), Hung (1987) and Zhang Z. (1988)) and the Optimality Theoretic approach (Zhang N. (1997)). In this paper it is demonstrated that these previous studies do not adequately account for Mandarin tone sandhi.

The most serious problem in the derivational tradition, as pointed out in Zhang N. (1997), is its inability to offer a unified account for both the PP and the non-PP utterances in Mandarin tone sandhi. For illustration in section III, I will review Shih's (1986) work, which is one of the most well-known derivational approaches. Although Zhang N. (1997) offers an analysis in the framework of Optimality Theory (Prince and Smolensky 1993) that seems able to solve the PP/non-PP discrepancy inherited from the derivational tradition, it is shown in Section III that Zhang's analysis still admits some problems which must be resolved.

The present paper attempts to reanalyze Mandarin tone sandhi using Optimality Theory (OT). A set of tonal constraints and a set of prosodic constraints are proposed in this study. The set of tonal constraints is mainly used to account for the tonal change (i.e. the change of a L tone to a LH tone before another L tone) in Mandarin tone sandhi. This paper argues that to account for such phenomena, the set of tonal constraints must distinguish between two levels of OCP, the tonal level and the tonemic level. The prosodic constraints are posited to determine the Mandarin tone sandhi domain. This paper shows that the unparsed preposition at the prosodic word level and the Local Constraint Conjunction proposed in Smolensky (1995) play an important role in determining the tone sandhi domain for PP and non-PP tone sandhi in Mandarin. Due to limited space, I will only discuss the adagio reading in Mandarin tone sandhi.

The remainder of this paper is organized as follows: Section II offers a brief introduction to the phenomenon of Mandarin tone sandhi; Section III briefly reviews two of the previous studies (Shih (1986) and Zhang N. (1997)) of Mandarin tone sandhi, focusing on some of their problems; Section IV proposes a set of tonal constraint and Section V proposes a set of prosodic constraints for Mandarin tone sandhi; and Section VI summarizes the conclusions of this study.

II. Tone Sandhi in Mandarin

Mandarin has four tones: high level (H), rising (LH), low (L) and falling (HL). In Mandarin, when two L tones are adjacent in a string, the first tone changes to a LH tone.

* This paper has greatly benefited from discussions with Prof. Hui-chuane Huang, Prof. Jane S. Tsay, Prof. Yuchao Hsiao and Richard S. Cook. Thanks to Richard S. Cook for also helping me with my English. All errors are my own responsibility.

1 In this paper, I follow the notation used in Shih (1986) and Hsiao (1991) to represent the Mandarin third tone as a L tone since the phonological function of Mandarin third tone is a L.

2 Generally speaking, there are four types of readings conditioned by speech rate differences in Mandarin tone sandhi. The readings are the adagio reading, the moderate reading, the allegro reading, and the presto reading. For the discussions of these different readings in Mandarin tone sandhi, please refer to Cheng (1973) and Selkirk (1984a,b).
In the derivational tradition, the tone sandhi rule in (2) is used to account for this tone sandhi phenomenon.

1. Mandarin Tone Sandhi Rule: \(L \rightarrow LH \), L.

2. Consider the following trisyllabic examples:

(3) base tone	sandhi tone
 LH | LH
 L | LH
 L | L
 LH | LH
 LH | L
 L | LH
 LH | L

(4) base tone	s.
 LH | LH
 L | LH
 L | L
 LH | LH
 LH | L
 L | LH
 LH | L

 a. ‘umbrella is good’
 b. ‘small umbrella’
 c. ‘rain umbrella good’
 d. ‘small rain umbrella’
 e. ‘san san san’
 f. ‘xiao yu san’

 By applying the tone sandhi rule in the prosodic foot, the sandhi in (3) can now be explained.

To capture this phenomenon, an appropriate tone sandhi domain within which the tone sandhi rule will apply must be defined. Several kinds of tone sandhi are proposed in the derivational tradition. For example, Shih (1986) suggests that the domain for Mandarin tone sandhi is a prosodic foot within which the Mandarin tone sandhi rule should apply cyclically.

The parameter for deriving the prosodic foot in Shih (1986) will be reviewed in the next section.

III. Previous Analyses

3.1 Shih’s (1986) Analysis

Shih (1986) proposes that the domain of Mandarin tone sandhi is prosodically defined and that it is the foot that constitutes the domain of Mandarin tone sandhi. The Foot Formation Rule proposed in Shih (1986) to derive prosodic feet is given below, where the formation of the 1C foot should precede that of the DM foot and the super-foot.
(5) Foot Formation Rule (FFR)
Foot (f) Construction
a. IC: Link immediate constituents into disyllabic feet.
b. DM: Scanning from left to right, string together unpaired syllables into binary feet, unless they branch to the opposite direction.
Super-foot (f') Construction
Join any leftover monosyllable to a neighboring binary foot according to the direction of syntactic branching.

The FFR successfully accounts for the domain formation of non-PP utterances like (6). However, it fails when the utterance is a quadrasyllabic string with a full NP object, as shown in (7).

(6) 'The cat walks with an umbrella.'
\begin{verbatim}
mao da san tzou
cat hit umbrella walk
\end{verbatim}
\[
\begin{array}{cccc}
\hline
& & IC & f' \\
H & LH & LH & L \\
\hline
\end{array}
\]

(7) 'The cat is smaller than the dog.'
\begin{verbatim}
mao bi gou xiao
cat compare dog small
\end{verbatim}
\[
\begin{array}{cccc}
\hline
& & IC & f' \\
?? & LH & LH & L \\
\hline
\end{array}
\]

To predict the correct tonal domain, Shih suggests that FFR-IC should be skipped in these kinds of word strings, and that such strings should be parsed into the DM feet directly, as shown in (8).

(8) 'The cat is smaller than the dog'
\begin{verbatim}
mao bi gou xiao
cat compare dog small
\end{verbatim}
\[
\begin{array}{cccc}
\hline
& DM & DM \\
H & L & LH & L \\
\hline
\end{array}
\]

However, the claim that FFR-IC should be skipped in all and only the quadrasyllabic [P NP] structures is no more than a stipulation. Just as Shih (1986), the present analysis assumes that the tone sandhi domain of Mandarin tone sandhi is a prosodic foot. However, unlike Shih's approach, the analysis in this paper provides a unified solution for tone sandhi in both PP and non-PP utterances without stipulation.

3.2 Zhang's (1997) Analysis
In order to solve the PP/non-PP problem unresolved by the derivational tradition, Zhang (1997) proposes an analysis based on OT. Zhang's (1997) approach requires two things. The first one is a set of ranked constraints that serves to account for Mandarin tone sandhi in general. They are PTAS, *33, CI >> PTRS, Align-Di-L, Max, as listed in (9).

(9) Constraints for Mandarin Tone Sandhi (Zhang 1997)
(a) Parse UT of an Absolutely Strong Node (PTAS): The underlying tone of a strong constituent, which is not dominated by any w(eak) node, must be parsed.
(b) Parse UT of a Relatively Strong Node (PTRS): The underlying tone of a strong
The following two examples provide different from non-p in Mandarin tone sandhi. The constituent strength of pp is always unspecified, as shown in (10). However, elements in pp are always unspecified, as shown in (10).

The second one is the presence of the constituent strength, which serves as input to the contextual strength.

![Diagram of constituent strength](image-url)