CDG: AN ALTERNATIVE FORMALISM FOR PARSING
WRITTEN AND SPOKEN THAI

Siripong Potisuk

Department of Electrical Engineering, Academic Division,
Chulachomklao Royal Military Academy, Nakorn-nayok 26000, THAILAND

and
Mary P. Harper

School of Electrical and Computer Engineering, Purdue University,
West Lafayette, IN 47907, USA

1. Introduction

The impetus for this research arose during an investigation of the language
modelling aspects of an automatic speech understanding system of Thai. A good
language model not only improves the accuracy of low-level acoustic models of
speech, but also reduces task perplexity (the average number of choices at any
decision point) by making better use of high-level knowledge sources including
prosodic, syntactic, semantic, and pragmatic knowledge sources. A language model
often consists of a grammar written using some formalism which is applied to a
sentence by utilizing some sort of parsing algorithm. For example, a set of context-
free grammar (CFG) production rules can be used to parse sentences in the language
defined by that grammar. CFG is a phrase-structure representation of syntax
(Chomsky, 1963). Another example is constraint dependency grammar (CDG). CDG
parsers rule cut ungrammatical sentences by propagating constraints. Constraints are
developed based on a dependency-based representation of syntax. Some parsing
algorithms combine phrase-structure and dependency grammars. In this paper, a
CDG parsing approach is adopted. In the next section, we present a contrastive
description of the two major approaches to representing the syntax of natural
languages in order to motivate our choice of dependency grammar for parsing Thai
sentences.

1178

1.1 Dependency vs. phrase-structure grammar

In the theory of the syntax of natural languages, there are currently two major
methods of representing the syntactic structure of natural sentences: dependency
grammar and phrase-structure (constituency) grammar. There has been no third
approach developed although combinations of the two major methods above have
been used, e.g., lexical-functional grammar, case grammar, relational grammar, word
grammar, etc. (Mel' €uk, 1988).

As a formal syntactic representation, dependencies have been studied and
explored for centuries by traditional syntacticians of European, Classical, and Slavic
languages. Lucien Tesniere (1959) was credited as the first syntactician who
formalized and laid the groundwork for subsequent investigations of the theory.
Unfortunately, the dependency formalism has not gained great popularity among
today's syntacticians, who generally favor constituency grammar. Constituency or
phrase-structure grammar was formulated in North America in the early 1930's by
Leonard Bloomfield (1933), primarily for describing the syntax of English. The
theory was seriously advanced by Noam Chomsky, and his transformational-
generative approach has been accepted throughout the world. Phrase-structure
syntax gradually forced dependency syntax into relative obscurity. Nevertheless,
there have been some attempts to defend the use of dependency syntax, and several
linguists have contributed to this cause. For example, Mel' uk (1988) presented an
argument for the case of dependency formalism and bravely claimed that
"dependencies are much better suited to the description of syntactic structure (of
whatever nature) than constituency is." His contrastive description of the two
methods is summarized as follows.

A dependency grammar describes the syntactic structure of a sentence by
using a dependency tree (D-tree) to establish dependencies among words in terms of
head and dependents. A D-tree shows a relational characteristic of the syntactic
representation in the form of hierarchical links between items, i.e., which items are
related to which other items and in which way. On the other hand, a phrase-structure
grammar uses a phrase-structure tree (PS-tree) to describe the groupings of words
into the so-called constituents at different levels of sentence construction. A PS-tree
shows which items go together with other items to form tight units of a higher order,
a distributional characteristic of a grouping within a larger grouping.

A tree is a network consisting of nodes which are linked in a tree-like
structure (i.e., with a stem and branches). In a syntactic tree, a node which represents
a word or lexical item, the smallest syntactic unit, is called a terminal node; a node
which represents an abstract syntactic grouping or phrase, suc!: as noun phrase (NP),
verb phrase (VP), prepositional phrase (PP), etc,, is called a non-terminal node. A D-
tree contains only terminal nodes; no abstract representation of syntactic groupings
is used. On the contrary, a PS-tree contains both terminal and non-terminal nodes;
most nodes are, however, non-terminal. This hierarchical representation in terms of

1179

terminals and non-terminals in a PS-tree leads to the notion of syntactic class
membership of an item (i.e., categorization as belonging to an NP, VP, ett.).
Syntactic class membership is a way of labelling syntactic roles in a PS-tree because
a PS-tree does not and cannot specify the types of syntactic links existing between
two items in a natural and explicit way. On the other hand, class membership is not
specified in a D-tree. Instead, a D-tree puts a particular emphasis on specifying in
detail the type of any syntactic relation between two related items. Such syntactic
relations are, for example, predicative, determinative, coordinative relations, etc. In
addition, in terms of the ordering of nodes, nodes must be ordered linearly in a PS-
tree. In a D-tree, however, nodes are not necessarily in a linear order.

From the above, one can draw the following conclusion. The PS-
representation is suitable for languages like English which have a rigid word order and
a near absence of syntactically driven morphology. On the other hand, the D-
representation is suitable for languages like Latin or Russian which feature an
incredibly flexible (but far from arbitrary) word order and very rich systems of
morphological markings. In these languages, word arrangements and inflectional
affixes are obviously contingent upon relations between words rather than upon
constituencies.

1.2 The difficulty of parsing Thai.

Research on the syntactic analysis of Thai sentences by computer has been
carried out for over a decade. Thai grammars have been developed utilizing various
grammar formalisms based on the above two theories of syntax or their combination.
However, the most popular formalism has been the phrase-structure representation
‘of syntax. Vorasucha (1986) was one of the first researchers to use Gazdar's
Generalized Phrase-Structure Grammar (GPSG) in his research. Syntactic rules were
written in ID and LP rule formats. Pornprasertsakul, et al. (1990) later employed
additional FSD constraints of GSPG to describe three types of sentence structures
including verb and noun phrases. Aroonmanakul (1990) developed a nondeterministic
parser called CUPARSE based on a dependency representation of syntax. The parser
uses a chart as its central data structure. As part of a project on machine translation
of Asian languages, Sornlertlamvanich and Phantachart (1992) used a combination of
phrase-structure and dependency grammars. Phrase-structure grammar rules were
used to identify locally well-formed phrase patterns, and thus reduce lexical
ambiguities, based on the relatively fixed relation of the positions of Thai words and
their syntactic roles. Then, syntactic dependency structures among the words were
generated based on verb subcategorization information. Finally, the syntactic
dependency structure was mapped to a semantic one by utilizing lexical functional
grammar. Wuwongse and Pornprasertsakul (1993) introduced a probabilistic
approach using a least exception logic (LEL) model of default reasoning to resolve

1180

ambiguities. Despite increasing concerted efforts among Thai universities and
government agencies, a satisfactory approach to analyzing Thai sentences has not
been obtained. Difficulties in parsing Thai sentences arise for the following reasons.

First, written Thai sentences do not contain dilimiters or blanks between
words. Unlike English, Thai words are not flanked by a blank space. Words are
concatenated to form a phrase or sentence without explicit word dilimiters. This
creates a problem for the syntactic analysis of Thai sentences because most parsers
operate on words as the smallest syntactic unit in a sentence. To overcome this
problem, a word segmentation module must be added to the front end of most Thai
parsers. It may seem, on the surface, that the problem has been solved. But, on the
contrary, a new problem has been created. Instead of analyzing a single sentence, a
parser must now analyze multiple sentence hypotheses comprising a combination of
all possible words generated by the word segmentation algorithm. For example, given

the following string of Thai characters (Luksaneeyanawin, 1993), MMWI000NRAN, two
possible sentence hypotheses are generated given dictionary lookup. Note that the

string WD is not a legitimate Thai word based on a Thai-English dictionary
(McFarland, 1960).

a. MA 70 DDN QN
b. M WY bo oN AN

Secondly, Thai words lack inflectional and derivational affixes. Since words
in Thai do not inflect to indicate their syntactic function, the position of a word in a
sentence alone shows its syntactic function. Hence, syntactic relationships are
primarily determined by word order, and structural ambiguity often arises. For
example, without a subject-verb agreement feature or disambiguating context, there
is no way of differentiating a 2-syllable noun-verb sequence from a 2-syllable
compound noun comprising the same sequence of words. The following example
illustrates the problem.

Compound: wwiumudng 3 A inn
'He is a flirting kind. He has a lot of girlfriends.’
Sentence: s iided 1 auin inn
'He is not a stuck-up movie star. Many fans love him.'
Thirdly, inconsistent ordering relations within and across phrasal categories

characterize Thai sentences. Based on word order typology, the majority of world's
languages usually exhibit consistent ordering relations across phrasal categories. The

1181

head (i.e., the central, obligatory member) of the phrase is usually placed either
consistently before its modifiers and complements as in the so-called head-initial
languages or after its modifiers and complements as in head-final languages. Such
classification of a particular language is made according to the majority of its ordering
relations within phrases, and thus, the distinction is based on tendencies, not
exclusivity. In Thai, a noun, the head of a noun phrase, always precedes its modifying
adjectives and determiners. The verb phrase, however, exhibits less consistency.
Although a verb, the head of the verb phrase, always precedes its object, its modifying
auxiliaries can either precede or follow it. In addition, constituents which optionally
occur with the head in both noun and verb phrases, such as determiners and
quantifiers, tend to be less consistent in their ordering as well. The following example
contains three syntactically correct versions of the same sentence, 'He often invites
his friends to have dinner at his house’, each with a different ordering of constituents.

MNYUADY q AU AU Vil oy
(W¥UARDY q A AW ey Y
WYY q Ay ihu AU ey

Lastly, Thai sentences sometimes contain discontinuous sentence constituents
in their construction. In grammatical analysis, discontinuity refers to the splitting of
a construction by the insertion of another grammatical unit. In other words,
discontinuity occurs when the elements which make up the constituents are
interrupted by elements of another constituent in a sentence. Consider the following
example in which the object noun phrase (NP-obj) is interrupted by the auxiliary
(aux.).

(iou du misdo T @y Hila
I |
friend borrowed book (aux.) (classifier) a

| NPsubj. | V. |——— NP-obj — |

In this paper, we introduce a different approach to Thai syntactic parsing
based on a constraint dependency grammar. Our decision to use CDG parsing for
handling Thai sentences rather than CFG parsing is based on several things. Since we
are developing an automatic speech understanding system, vantage points from both
speech and natural language processing aspects of the system are taken into
consideration.

1182

When choosing between the syntactic formalisms described in section 1.1, it
appears that Thai syntax might be better described by a dependency than a phrase-
structure representation in syntax. Also, from past work, CFGs have not produced
satisfactory results for Thai grammar development.

Given the aforementioned properties of Thai sentences, a CDG parser appears
to be an attractive choice for parsing Thai sentences. A CDG parser has many
advantages over traditional CFG parsers. The set of languages accepted by a CDG
grammar is a superset of the set of languages accepted by CFGs. Also, CDG can
accept languages that CFGs accept as well as some they cannot, for example, a”b"c”
and ww (where w is some string of terminal symbols). In addition, CDG is capable of
efficiently analyzing free-order languages because order between constituents is not
a requirement of the grammatical formalism. Since Thai exhibits significant word
order variation, using CFG to describe Thai is cumbersome because numerous rules
would be needed to cover all possible configurations of a constituent. Although
GSPG, which has previously been used for parsing Thai, can easily and concisely
describe free-order languages', how to combine the separate GSPG constraints
together in parsing has proven to be a problem (Tanaka, 1993). Thus, CDG
represents an alternative parsing formalism that is well worth considering.

In order to overcome the difficulties of analyzing Thai sentences, Wuwongse
and Pomprasertsakul (1993) suggested that an information-intensive approach might
be effective. In other words, a coordinating scheme must be devised to allow the
parser to simultaneously or hierarchically utilize lexical, syntactic, semantic, and
pragmatic information in resolving ambiguities. A CFG parser does not provide a
good coordinating scheme because it is incapable of selectively invoking different
knowledge sources. The CDG approach, on the other hand, provides a uniform
mechanism of constraint propagation for each knowledge source during parsing.
Furthermore, the constraints for each knowledge source can be developed
independently, and it is not difficult to add an additional knowledge source if desired.
Harper and Helzerman (1994) have successfully constructed and incorporated
syntactic, semantic, and pragmatic constraints into their system. In fact, semantic
constraints were added to the grammar without having to modify a single syntactic
constraint. Moreover, the rules for each of the information sources can be
independently applied to the constraint network of word nodes. If ambiguity remains,
additional constraints can be used. This property allows decisions about structural
ambiguities to be postponed until the constraints settle on a single structure,
eliminating the need for backtracking.

From the speech processing point of view, CDG parsing is useful for building
a spoken language understanding system, which must be able to tolerate repeated and
aborted phrases as well as disfluencies. There is no notion of left-to-right parsing

<

1GPSG is more expressive than a CFG as well.

1183

because it does not matter where in the sentence the word is (unless the constraint
needs to relate the order of two words in the sentence). Also, incorporating prosodic
information into a CFG requires a tight coupling of prosodic rules with syntactic rules.
Not only does tight coupling increase the size and complexity of the grammar and
reduce its understandability, it also makes syntactic rules and prosodic rules
inseparable. On the other hand, preliminary work with prosodic constraints indicates
that prosodic constraints should be easily added to a CDG grammar (Zoltowski, et
al,, 1992).

Another important consideration in natural language processing is the issue
of parallel parsing to achieve real-time performance. A parallel parser using a
collection of processors can achieve substantial speed-up over a traditional parser.
Although CDG has a relatively slow serial running time, the parsing algorithm is much
more parallelizable than CFG parsing (Helzerman, 1993). The best serial running time
for a practical CFG parser operating with an ambiguous grammar is O(Gx n°)
(Graham, et al., 1980), where n is the number of words in-a sentence and G is the size
of the CFG grammar. The serial running time for a CDG parser is O(k n*), where
k is the number of constraints in the grammar and » is the number of word nodes
(Harper and Helzerman, 1995). In practice, & is comparable in size to G for grammars
with the same coverage, and G >> n. In contrast, a parallel CFG parser by Kosaraju's
method (Kosaraju, 1975) can parse in O(n) time using O(n’) processors. A
parallelization for the single sentence CDG parser (Helzerman and Harper, 1992;
Helzerman, 1993) can parse in O(k) time using O(n*) processors.

Concerning the need to analyze multiple sentence hypotheses in Thai parsing,
an extension to the CDG parsing by Harper and Helzerman (1995) allows efficient
processing of multiple sentence hypotheses in the form of an augmented word graph.
Usually, a speech recognizer unit provides a list of N-best sentence hypotheses.
Likewise, a word segmentation algorithm for written Thai often generates multiple
sentence hypotheses. Processing all of the sentence hypotheses individually can be
inefficient since many hypotheses are quite similar. Instead of operating on single
sentences, multiple sentence hypotheses can be efficiently processed using a data
structure called a Language Constraint Network (LCN), which is a directed acyclic
word graph augmented with parse-related information. The LCN is pruned by
propagating various constraints including syntactic, lexical, semantic, prosodic, and
pragmatic constraints. It provides 2 much better representation than a list of sentence
hypotheses because it reduces redundancy and compactly represents the set of
sentence hypotheses, thereby reducing the storage requirement. Clearly, this
represents a more efficient and less redundant means of passing sentence hypotheses
to the parser than a list of sentence hypotheses (Harper and Helzerman, 1994). Fig.1
depicts an example of a word graph, which can be converted to an LCN, constructed
from a list of three sentence hypotheses.

1184

Fig. 1. A word graph constructed from a list of two sentence hypotheses

generated from the Thai character string, MWIDOONAIN, by a word
segmentation algorithm.

2. A Description of CDG Parsing

This section describes the basics of CDG parsing, originally defined by
Maruyama (1990a, b) and later extended to handle lexical ambiguity, feature analysis,
and multiple sentence hypotheses by Harper and Helzerman (1995). A step-by-step
process of parsing a simple Thai sentence is also provided to illustrate constraint
parsing following Maruyama's original approach. Interested readers are referred to
Harper and Helzerman (1995) for a discussion on the aforementioned extensions to
CDG parsing.

2.1 Elements of CDG
Maruyama defines a CDG as a 4-tuple, G = (2, R, L, C), where:
2 = afinite set of terminal symbols or lexical categories,
L = afinite set of labels, {/,,......, L},

R = afinite set of uniqueiy named roles (or role-ids), {r,,......, 7.},
C = aconstraint set of unary and binary constraints.

1185

Within this grammar, a sentence s = w,w,w.w,.....w, is defined as a word string of
finite length 7 and is an element of Z'*. The elements of X' are the parts of speech of
the words in a sentence. Associated with every word i in a sentence s are all of the
prolesin R. Hence, every sentence contains nx p roles. A role can be thought of as
a variable which is assigned a role value. A role value is a tuple (/,m), where / is a
label from L and m is an element of the set of modifiees, {1,2,.....,n,nil}. A modifiee
is a pointer to another word in the sentence (or to no word if nil). Role values will
be denoted in the examples as label-modifiee.

Two types of roles (role-ids) per word are used; governor and need roles.
The governor role indicates the function a word fills in a sentence when it is governed
by its head word (e.g., a subject is governed by the main verb). Several need roles
(i.e., needl and need2) may be used to make certain that a head word has all of the
constituents it needs to be complete. Each of the need roles keeps track of an item
that its word needs in order to be complete (e.g., a verb generally needs a subject for
the sentence to be complete).

The function that a word plays within the sentence is indicated by assigning
arole value to arole. The label in the role value indicates the function the word fills
when it is pointing at the word indexed by its modifiee (e.g., a subj label). When a
role value is assigned to the governor role of a word, it indicates the function of that
word when it modifies its head word. Likewise, when a role value is assigned to a
need role of a word, it indicates how that need is being filled.

To parse a sentence using CDG, the constraints (members of C) must be
specified. A constraint set, C, is a logical formula of the form: (and C, C, C).
Each C; is a constraint represented in the form: (if Antecedent Consequent), where
Antecedent and Consequent are either single predicates or a group of predicates
joined by the logical connectives (a conjunction or disjunction of predicates). The
possible components of each C; are variables, constants, access functions, predicate
symbols and logical connectives. They are described next.

Variables (i.e., x, y, etc.) used in the constraints stand for the role values. A
constraint involving only one variable is called a unary constraint; two variables, a
binary constraint. A maximum of two variables in a constraint allows for sufficient
expressivity. The use of more than two would unnecessarily increase the running time
of the parsing algorithm.

Constants are elements and subsets of Zu Ru Lu {nil, 1,2,......,n}, where n
corresponds to the number of words in a sentence.

The definition of the allowable access functions for constructing constraints
are given below:

(pos x) returns the position of the word for the role value x.
(rid x) returns the role-id for the role value x.

(lab x) returns the label for the role value x.

(mod x) returns the position of the modifiee for the role value x.

(cat i) returns the lexical category for the word in position i.

1186

The predicate symbols allowable in constraints are:

(eq xy) returns true if x =y, false otherwise.
(gt xy) returns true if x >y, x,y € L, false otherwise.
(t xy) returns true if x <y, x,y € I, false otherwise.
(elt xy) returns true if x €y, false otherwise.

The logical connectives are:

ANp9g returns true if p and q are true, false otherwise.
(Vpq returns true if p or q is true, false otherwise.
(~ p) returns true if p is false, false otherwise.

Using the above predicate symbols and access functions, unary and binary
constraints for a CDG grammar can be constructed. Unary constraints are often used
to restrict the role values allowed by a role given its part of speech. For example, the
following unary constraint indicates that if a word is a verb, it must have the label root
and be ungoverned:

(if (N (eq (cat (pos x)) verb)
(eq (rid x) governor))
(A (eq (lab x) root)
(eq (mod x) nil))).

Binary constraints are constructed to describe how the role values assigned to two
different roles are interrelated. For example, the following binary constraint is used
to indicates that a subject must be governed by a root to its right:

(if (/ (eq (lab x) subj)
(eq (mod x) (pos)

(A (eq (laby) rooy)
(1t (pos x) (pos y))).

In CDG, a sentence s is said to be generated by the grammar if there exists an
assignment A given a set of constraints C. An assignment A for the sentence s is a
function that maps role values to each of the nx p roles such that the constraint set
C is satisfied. There may be more than one assignment which satisfies C, in which
case there is more than one parse for the sentence. L(G) is the language generated by
a grammar G if and only if L(G) is the set of all sentences generated by G. Note that
the null or empty string € has no roles and is always generated by any grammar
according to the definition.

1187

A CDG grammar is characterized by two parameters: degree and arity. The
degree is indicated by the size of R. The maximum number of variables used in
constructing the constraints indicates the arity or the grammar. Maruyama has proven
that a CDG grammar with a degree and arity of two is required to obtain the
expressive power of a CFG (and exceed it).

To illustrate the use of CDG grammars, consider a simple example grammar
used for parsing a Thai sentence, lﬁ'oﬁaw, given in Fig. 2. The grammar has a
degree of one and an arity of two. The constraints in this grammar were chosen for
simplicity, not to exemplify constraints for a wide coverage grammar. Note that U-1,
U-2, U-3 are unary constraints because they involve a single variable, and B-1 is a
binary constraint because it contains two variables. In this paper, we adopt the lexical
categorization of Thai words proposed by Panupong (1970).

For G’ to generate the sentence, there must be an assignment of a role value
to the governor role of each word, and that assignment must simultaneously satisfy
each of the constraints in C'. Note that each word is assumed in this example to have
a single lexical category, which is determined by dictionary look-up. Table 1 depicts
an assignment for the sentence which satisfies C'.

{det, noun, verb}
{governor}
{det, root, subj}
vx,y (A
i+ [U-1] A noun receives the label 'subj' and modifies a word to its right.
(if (eq (cat (pos x)) noun)
(A (eq (lab x) subj)
(It (pos x) (mod x))))
;; [U-2] A determiner receives the label ‘det' and modifies a word to its left.
(if (eq (cat (pos x)) det)
(A (eq (lab x) det)
(it (mod x) (pos x))))
;3 [U-3] A verb receives the label 'root' and modifies no word.
(if (eq (cat (pos X)) verb)
(A (eq (lab x) root)
(eq (mod x) nil)))
i+ [B-1] A subjis governed by a verb.
(if (A (eq (lab x) subj)
(eq (mod x) (pos y)))
(eq (cat (pos y)) verb)))

x
R
L
C’

nnopon

Fig. 2. The grammar G’ =(X', R, L', C").

1188

Table 1. An assignment for the sentence (Yotiorg.

Pos Word Cat Governor role's value
1 ﬂo noun subj-3
2 i det det-1
3 [3.3] verb root-nil

2.2. Parsing a sentence with CDG grammar.

To determine whether a sentence is generated by a grammar, the CDG parser
must be able to assign at least one role value which satisfies the grammar constraints
to each of the nx p roles, where n is the sentence length, and p is the number of role-
ids. Because the role values for the role are selected from the finite set L x {nil, 1,
2,....., n}, CDG parsing can be viewed as a constraint satisfaction problem over a
finite domain. Hence, constraint propagation can be used to develop the parse of a
sentence. Enumeration of the individual parses for a highly ambiguous sentence is
intractable. Therefore, a CDG parser generates all parses for a sentence in a compact
form. The steps required for parsing a single sentence Hofiono are provided to
illustrate both the process of parsing with constraint propagation and the running time
of the algorithm.

To develop a syntactic analysis for a sentence using CDG, a constraint
network (CN) of words is created. Each of the n words in a sentence is represented
as a node in a CN. Fig. 3 illustrates the initial configuration of nodes in the CN for

the example, \Aofione. Notice that associated with each node is its word, category,
sentence position, and roles (only one role for this example). Each of the roles is
initialized to the set of all possible role values (i.e., the domain). Given G’, the
domain for the example is L'x {nil, 1, 2, 3} = {det-nil, det-1, det-2, det-3, subj-nil,
subj-1, subj-2, subj-3, root-nil, root-1, root-2, root-3}. Since there are gx (n+1) =
O(n) possible role values for each of the nx p roles for a sentence (where p, the
number of roles per word, and ¢, the number of different labels, are grammatical
constants, and 7 is the number of words in the sentence), there are nx px gx (n+1)
= O(#?) role values which must be initially generated for the CN, requiring O(7%) time.
Note that each role value has a direct access to its role-id, label, modifiee, and the
position of its word. A role value must access the word node to determine its lexical
category (this was changed in Harper and Helzerman, 1995).

To parse the sentence using G’, the unary and binary constraints in C’ are
applied to the CN to eliminate those role values from the roles of each word which

1189

are incompatible with C’. For a sentence to be grammatical, each role in each word
node must contain at least one role value after constraint propagation.

node
word = .
category {detnil, det-1, det-2, det-3,
position root-nil, root-1, root-2, root3,
role =G subjnil, subj-1, subj-2, subj-3}
"(detnil, det-1, det-2, det-3,
root-nil, root-1, root-2, root3,
subj-nil, subj-1, subj-2, subj-3} aw
verb
role values 3
©)

{det-nil, det-1, det-2, det-3,
root-nil, root-1, root-2, root3,
subj-nil, subj-1, subj-2, subj-3}

Fig. 3. Initialization of roles for the sentence 0T,

The unary constraints are applied to each of the roles in the sentence to
eliminate the role values incompatible with each word's role in isolation. To apply the
first unary constraint (i.e., U-1, shown below) to the network in Fig. 3, each role
value for every role is examined to ensure that it obeys the constraint:

;5 [U-1] A noun receives the label 'subj' and modifies a word to its right.
(if (eq (cat (pos x)) noun)
(and (eq (lab x) subj)
(It (pos x) (mod x))))

If a role value causes the antecedent of the constraint to evaluate to TRUE and the
consequent to evaluate FALSE, then the role value is eliminated. Fig. 4 shows the
remaining role values after U-1 has been applied to the CN in Fig. 3. Since each
constraint can only contain access functions and predicates that operate in constant
time (i.e., like those defined in section 2.1), the propagation of the unary constraint
U-1 to O() role values requires O(n%) time.

1190

To further eliminate role values which are incompatible with the word
categories in the example, the remaining unary constraints (i.e., U-2 and U-3) are
applied to the CN in Fig. 4, producing the network in Fig. 5. Given that the time to
apply the unary constraints to a single role value is a grammatical constant denoted
as k,, the time required to apply the unary constraints in a grammar to all role values

is O(k,»).

{detnil, det-1, det-2, det-3,
root-nil, root-1, root-2, root3,
subj-nil, subj-1, subj-2, subj-3)

(sub}-2, subj-3)

{det-nil, det-1 , det-2, det-3,
root-nil, root-1, root-2, root3,
subj-nil, subj-1, subj-2, subj-3)

Fig. 4. The constraint network after the propagation of U-1 for the sentence

& -~
KYouag.
ﬂ
{det-1)

- @

{root-nig

Fig. 5. The constraint network after the propagation of all unary constraints.

1191

The binary constraints determine which pairs of role values can legally coexist.
To keep track of pairs of role values, arcs connect each role to all other roles in the
network, and each arc has an associated arc matrix, whose row and column indices
are the roles value associated with the two roles. The elements of an arc matrix can
either be a 1 (indicating that the two role values which index the element are
compatible) or a 0 (indicating that the role values cannot simultaneously exist).
Initially, all elements in each matrix are set to 1, indicating that the two role values are
initially compatible. Since there are O(n?) arcs required in the CN, and each arc
contains a matrix with (gx (n+1))? = O() elements, the time to construct the arcs
and initialize the matrices is O(n*). Fig. 6 shows the matrices associated with the arcs
before any binary constraints are propagated. Unary constraints are usually
propagated before preparing the CN for binary constraints because they eliminate
impossible role values, and hence reduce the size of the arc matrices.

{subj-2, subj-3}

det-1 /

subj-2 . 7
subj-3

\
\‘ root-nil
subj-2
subj-3[1 |

Fig. 6. The constraint network after unary constraint propagation and
before binary constraint propagation.

Binary constraints are applied to the pairs of roles values indexing each of the
arc matrix elements. When a binary constraint is violated by a pair of role values, the
entry in the matrix indexed by those role values is set to zero. The binary constraint,
B-1, ensures that a subj is governed by a verb.

;5 [B-1] A subj is governed by a verb.
@f (A (eq (lab x) subj)
(eq (mod x) (pos ¥)))
(eq (cat (pos y)) verb)))

1192

After the application of this constraint to the network in Fig. 6, the element
indexed by the role values x = subj-2 and y = det-1 for the matrix on the arc
connecting the governor roles for H0 and 1l is set to zero, as shown in Fig. 7. This
is because 70 must be governed by a verb, not a det. Since the constraint must be
applied to O(n*) pairs of role values, the time to apply the constraint is O(n?). Given
that the time to apply the binary constraints to a pair of role values is a grammatical
constant denoted as k,, the time required to apply binary constraints in a grammar to

all pairs of role values is O(k, * n*).
ax
verb
3
©

{root-nil}

{subj-2, subj-3)

det-1 AN
subj-2 n ./ \. root-nil
subj-3| 1 det-1 E]

Fig. 7. The constraint network after B-1 is propagated.

Following the propagation of binary constraints, the roles of the CN could still
contain role values which are incompatible with the parse for the sentence. To
determine whether a role value is still supported for a role, each of the matrices on the
arcs incident to the role must be checked to ensure that the row (or column) indexed
by the role value contains at least a single 1. If any arc matrix contains a row (or
column) of Os, then the corresponding role value cannot coexist with any of the role
values for the second role and so is removed from the list of legal role values for the
first role. Additionally, the rows (or columns) associated with the eliminated role
value can be removed from the arc matrices attached to the role. The process of
removing any rows or columns containing all zeros from arc matrices and eliminating
the associated role values from their roles is called filtering. Filtering a constraint
network is known as arc consistency to constraint satisfaction researchers. Following
binary constraint propagation, any of the O(n*) role values may be filtered

1193

immediately. However, filtering must also be applied iteratively since the elimination
of one role value could lead to the elimination of another role value.

Consider how filtering is applied to the CN in Fig. 7. The matrix associated
with the arc connecting the governor roles of Yo and 7 contains a row with a single
element which is zero. Because subj-2 cannot coexist with the only possible role
value for the governor role of 1, it cannot be a legal member of the governor role of

lfT’D, and so subj-2 is eliminated as a role value for node 1's governor role. When the
role value is eliminated from all arcs associated with the role, filtering is complete.
The resulting CN is depicted in Fig. 8.

{subj-3} {root-nil}

AN

N root-nil

det-1

\

\‘ root-nil

subj-3

Fig. 8. The constraint network after filtering.

After all the constraints are propagated across the CN and filtering is
completed, the CN provides a compact representation for all possible parses.
Syntactic ambiguity is easy to spot in the CN since some of the roles in an ambiguous
sentence contain more than a single role value. If multiple parses exist, we can
propagate additional constraints to further refine the analysis of the ambiguous
sentence. The parse trees in a CN, which are called parse graphs, consist of a
compatible set of role values for each of the roles in the CN. The modifiees of the
role values, which point to the words they modify, form the edges of the parse graph.
Our example sentence has an unambiguous parse given G,, shown in Fig. 9.

1194

Fig. 9. The parse graph for the constraint network in Fig. 8.

3. Conclusion

The basic framework of a constraint-based parser for parsing written and
spoken Thai sentences has been described. The parser uses constraint dependency
grammar, originally defined by Maruyama. Our framework for Thai is based on an
extension to CDG proposed by Harper. Details of the system and its advantages for
parsing written and spoken Thai have also been discussed. A summary of the steps
in the CDG parsing algorithm and their associated running times is presented below:
1. Constraint network construction prior to unary constraint propagation:
o).

2. Unary constraint propagation: O(k,* n%).

3. Constraint network construction prior to binary constraint propagation:
o).

4. Unary constraint propagation: O(k,x n*).

5. Filtering (arc consistency): O(n*).

Notice that the time required to propagate binary constraints is the slowest part of the
algorithm.

Due to the scope of the paper, we cannot describe in detail the enhancements
made by Harper to CDG parsing algorithm to increase its usefulness for both text-
based and spoken natural language processing. However, we will briefly mention
them, as they are useful in our implementation of the parser for Thai as well. First,
the algorithm has been modified to parse sentences with lexically ambiguous words
by allowing role values within the same node to have their own parts of speech.
Another enhancement added to the CDG parser is a lexical feature analysis. For

1195

English and in other languages, lexical features are used to enforce subject-verb
agreement, determiner-head noun agreement, and case requirements for pronouns.
This information can be very useful for disambiguating parses for sentences or for
eliminating impossible sentence hypotheses. With respect to the efficiency issue of
the algorithm, a fifth parameter, T, where T is a table which restricts the possible
labels for each role according to the category of the word and its role id, has been
added to the CDG grammar tuple. T makes the analysis of a sentence more efficient
because the roles are initialized to smaller domains, and many of the unary constraints
(i.e., those which restrict labels or role values to lexically appropriate values) can be
omitted. Finally, the filtering algorithm of the CDG parser was modified to support
the parsing of LCNs. These extensions have been useful for processing spoken
English and are currently being used to investigate the impact of prosodic constraints
on Thai spoken sentences.

4. References

Aroonmanakul, W. 1990 A Dependency analysis of Thai sentences for a
computerized parsing system. Unpublished Master's thesis, Chulalongkorn
University.

Bloomfield, L. 1933 Language. New York: Holt, Rinehart and Winston.

Chomsky, N. and Schutzenberger, M. P. 1963 The algebraic theory of context-free
languages. In P. Braffort and D. Hirschberg (Eds.) Computer Programming
and Formal Systems, Studies in Logic Series. Amsterdam: North-Holland:
119-161.

Graham, S. L., Harrison, M. A, and Russo, W. L. 1980 An improved context-free
recognizer. ACM Transactions on Programming Languages and Systems. 2:
415-462.

Harper, M. P. and Helzerman, R. A. 1994 Managing multiple knowledge sources in
constraint-based parsing of spoken language. Fundamental Informaticae. 23
(2-4): 303-353.

Harper, M. P. and Helzerman, R. A. 1995 Extensions to constraint dependency
parsing for spoken language processing. Computer Speech and Language.
9:187-234.

Helzerman, R. A. and Harper, M. P. 1992 Log time parsing on the MasPar MP-1.
In Proceedings of the Sixth International Conference on Parallel Processing.
2:209-217.

Helzerman, R. A. 1993 PARSEC: A Framework for Parallel Natural Language
Understanding. Unpublished Master's thesis, Purdue University.

Kosaraju, S. R. 1975 Speed of recognition of context-free languages by array
automata. SIAM Journal of Computing. 4(3):331-340.

1196

Luksaneeyanawin, S. 1993 Speech computing and speech technology in Thailand.
Proceedings of the Symposium on Natural I anguage Processing in Thailand.
Chulalongkorn University.

McFarland, G. B. 1960 Thai-English Dictionary. Stanford: Stanford University
Press.

Maruyama, H. 1990a Constraint dependency grammar. Tech. Rep. RT0044. IBM,
Japan.

Maruyama, H. 1990b Constraint dependency grammar and its weak generative
capacity. Computer Software.

Mel' €uk, 1. A. 1988 Dependency Syntax: Theory and Practice. Albany: State
University of New York Press.

Panupong, V. 1970 Inter-sentence Relations in Modern Conversational Thai.
Bangkok: The Siam Society Press.

Pornprasertsakul, A., Wuwongse, V., and Chansaenwilai, K. 1990 A Thai
generalized phrase structure grammar and its parser. Proc. Int. Conf.
Computer Processing of Chinese and Oriental Languages. Hunan.

Sornlertlamvanich, V. and Phantachat, W. 1992 Information-based language analysis
for Thai. Proc. 3rd Int. Symposium Language and Linguistics. Bangkok:
497-511.

Tesnitre, L. 1959 Eléments de syntaxe structurale. Paris: Klincksieck (2nd edition,
revised and corrected, 1969).

Tanaka, H. 1993 Current trends on parsing. Proceedings of the Symposium on
Natural Language Processing in Thailand. Chulalongkorn University.
Vorasucha, V. 1986 Thai syntax analysis based on GSPG. Regional Symposium on

Computer Science and Its Application (with Emphasis on Aurtificial

Intelligence), KMITL.
Wuwongse, V. and Pornprasertsakul, A. 1993 Thai syntax parsing. Proceedings of

the Symposium on Natural Language Processing in Thailand. Chulalongkorn
University.

Zoltowski, C. B., Harper, M. P., Jamieson, L. H., and Helzerman, R. A. 1992
PARSEC: A constraint-based framework for spoken language understanding.

In International Conference on Spoken Language Processing.

